2005 Vol. 7, No. 7 1299–1302

Stereoselective Synthesis of 4-(N-Mesylamino)-2,3-unsaturated- α -O-glycosides via a New Glycal-Derived Vinyl α -N-(Mesyl)-aziridine

Valeria Di Bussolo, Maria Rosaria Romano, Mauro Pineschi, and Paolo Crotti*

Dipartimento di Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, I-56126 Pisa, Italy

crotti@farm.unipi.it

Received January 11, 2005

ABSTRACT

$$\begin{array}{c|c} \text{BnO} & \begin{array}{c} t\text{-BuOK} \\ \text{(1 equiv)} \\ \hline \text{ROH} \\ \text{0} \\ \text{$0$$$

N-Mesyl aziridine 7α , a new activated vinyl aziridine derived from p-glucal, has been synthesized by cyclization of *trans-N,O*-dimesylate 6 with *t*-BuOK in anhydrous benzene. The reaction of 7α with alcohols, phenol, and monosaccharides (O-nucleophiles) leads to the corresponding 4-*N*-(mesylamino)-2,3-unsaturated-*O*-glycosides and disaccharides through a completely regioselective 1,4-addition process that proceeds with high or complete α -stereoselectivity.

Alkyl *O*-glycosides having differently functionalized amino groups in different positions (aminosugars) are an important category of modified carbohydrate units present in numerous oligosaccharides and glycoconjugates.¹ Furthermore, aminosugars are important as essential components of bacterial capsular polysaccharides and as structural elements of aminoglycoside antibiotics with antiviral and antitumor activity.² In consideration of the biological importance of natural products containing aminosugars,³ the development of efficient synthetic routes to these carbohydrates is an attractive goal.

In this framework, our interest has been directed toward the stereoselective introduction of a nitrogen functionality at the C(4) carbon of a glycal system with simultaneous glycosylation to give 2,3,4-trideoxy-4-*N*-(substituted-amino)-hex-2-enopyranosides as valuable, nitrogen-containing, syn-

(3) Knapp, S. Chem. Soc. Rev. 1999, 28, 61.

thetic intermediates since the unsaturation allows further functionalization. Few methods have been reported to date for the synthesis of these synthetically useful compounds: the most convenient of these involves an allyl cyanate-to-isocyanate rearrangement of hex-3-enopyranosides and a palladium-catalyzed allylic substitution by secondary amines of suitable hex-2-enopyranosides.⁴

Recently, we disclosed a new glycosylation process based on the regioselective 1,4-addition of O-nucleophiles (alcohols) and C-nucleophiles (lithium alkyls) to diastereoisomeric vinyl oxiranes 1β (a and b) and 1α derived from 6-O-(benzyl)-O-(2a), 6-O-(trityl)-O-glucal (2b), and 6-O-(benzyl)-O-gulal (3), respectively. Corresponding 2,3-unsaturated O-and O-glycosides (from O-1O0) were obtained in a stereospecific way, whose configuration turned out to depend only on the configuration (O0 of the starting epoxide (Scheme 1). The observation that in this process the C(4)-OH group of addition products comes from the intermediate epoxide led us to pursue the prospect

^{(1) (}a) Banoub, J.; Boullanger, P.; Lafont, D. *Chem. Rev.* **1992**, *92*, 1167. (b) van den Bos, L J.; Codée, J. D. C.; van Boom, J. H.; Overkleeft, H. S.; van der Marel, G. A. *Org. Biomol. Chem.* **2003**, *1*, 4160.

^{(2) (}a) Wang, Y.; Kalka-Moll, W. M.; Roehrl, M. H.; Kasper, D. L. *Proc. Natl. Acad. Sci. U.S.A.* **2000**, *97*, 13478. (b) Choi, Y.-H.; Roehrl, M. H.; Kasper, D. L.; Wang, J. Y. *Biochemistry* **2002**, *41*, 15144. (c) Sears, P.; Wong, C.-H. *Angew. Chem., Int. Ed.* **1999**, *38*, 2300.

^{(4) (}a) Ichikawa, Y.; Kobayashi, C.; Isobe, M. *J. Chem. Soc., Perkin Trans. I* **1996**, 377. (b) Ichikawa, Y.; Kobayashi, C.; Isobe, M. *Synlett* **1994**, 919 and references therein. (c) de Brito, T. M. B.; da Silva, L. P.; Siqueira, V. L.; Srivastava, R. M. *J. Carbohydr. Chem.* **1999**, *18*, 609.

Scheme 1. Stereospecific α - and β -O-Glycosylation and C-Glycosidation by Epoxides 1α and 1β , Respectively

of achieving an analogous nitrogen transfer to the C(4) position via a corresponding activated aziridine intermediate.

In this preliminary approach to the chemistry of glycalderived aziridines, the readily accessible *N*-mesyl α -aziridine 7α (Scheme 2) turned out to be appropriate in order to check

Scheme 2. Stereoselective Synthesis of N,O-Dimesylate 6 and in Situ Cyclization to N-Mesyl Aziridine 7α

the chemical behavior of this new class of activated aziridines. We now report the stereoselective synthesis of the glycal-derived, activated aziridine 7α , starting from vinyl β -epoxide $1a\beta$ (Scheme 2), and the corresponding regio- and stereochemical behavior in nucleophilic addition reactions with alcohols (O-nucleophiles).

As previously reported,⁷ the reaction of epoxide $1a\beta$ with the noncoordinating tetramethylguanidinazide (TMGA) in MeCN proceeds in a completely 1,2-regioselective and antistereoselective way to afford the *trans*-azido alcohol **4** as the only reaction product (Scheme 2). The reduction of **4** with SnCl₂ in MeCN in the presence of PhSH/Et₃N led to *trans*- β -amino alcohol **5**,⁸ which was protected on both the amino and alcoholic groups with MsCl in Py to give the *trans*-N,O-dimesylate **6**, the ultimate precursor of vinyl

N-mesyl aziridine 7α . As in the case of the corresponding epoxides 1α and 1β , aziridine 7α was not stable enough to be isolated and could only be obtained in situ by basecatalyzed (*t*-BuOK) cyclization of *N*,*O*-dimesylate $6.^9$ However, appropriate 1 H NMR (200 MHz) experiments carried out on the sample prepared by adding *t*-BuOK to a C_6D_6 solution of 6 at 5 °C clearly showed that, within 10 min, vinyl aziridine 7α was present in the reaction mixture together with an almost equivalent amount of the unreacted precursor 6 (50% conversion). 10 The evidence for aziridine formation prompted us to determine the best protocol in order to accomplish an efficient one-pot glycosylation process using this new glycal donor.

In the optimized procedure, t-BuOK (1 equiv) was added at room temperature to a solution of trans-N,O-dimesylate $\bf 6$ in anhydrous benzene containing MeOH (4 equiv) (protocol A). A regioselective S_N2' reaction was obtained with clean formation of the corresponding 4-N-(mesylamino)-2,3-unsaturated- α -O-methyl glycoside $\bf 8\alpha$ (entry 1, Table 1) with a high α -stereoselectivity (93%). Under this protocol, the intermediate vinyl aziridine $\bf 7\alpha$ does not decompose but immediately reacts with the nucleophile (MeOH) present in the reaction mixture.

(6) Actually, the *N*-acetyl-*O*-mesyl deivative **6-Ac** corresponding to *N*,*O*-dimesylate **6** (Scheme 2) was initially prepared as a suitable precursor of the *N*-acetyl aziridine (7α -Ac) corresponding to 7α and examined in addition reaction with alcohols.

Unfortunately, **6-Ac** turned out to be completely unreactive with alcohols under protocol B (see text) and was entirely recovered from the reaction mixture. 1,4-Addition products derived from the corresponding aziridine 7α -Ac were obtained, even if in an unsatisfactory yield, only when **6-Ac** was left to react under protocol A (see text) only with MeOH and ECOHOL.

(7) Di Bussolo, V.; Caselli, M.; Romano, M. R.; Pineschi, M.; Crotti, P. J. Org. Chem. **2004**, 69, 8702.

(8) Bartra, M.; Romea, P.; Urpi, F.; Vilarrasa, J. Tetrahedron 1990, 46, 587.

(9) For reviews on aziridine chemistry, see: (a) McCoull, W.; Davis, F. A. Synthesis 2000, 1347. (b) Osborn, H. M. I.; Sweeney, J. Tetrahedron: Asymmetry 1997, 8, 1693. (c) Tanner, D. Angew. Chem., Int. Ed. 1994, 33, 599. For synthesis of activated vinylaziridines, see: (d) Arini, L. G.; Sinclair, A.; Szeto, P.; Stockman, R. A. Tetrahedron Lett. 2004, 45, 1589. (e) Morton, D.; Pearson, D.; Field, R. A.; Stockman, R. A. Org. Lett. 2004, 6, 2377. (f) Liao, W.-W.; Deng, X.-M.; Tang, Y. Chem. Commun. 2004, 1516. (g) Ibuka, T.; Mimura, N.; Aoyama, H.; Akaji, M.; Ohno, H.; Miwa, Y.; Taga, T.; Nakai, K.; Tamamura, H.; Fujii, N. J. Org. Chem. 1997, 62, 999. (h) Åhman, T.; Jarevång, T.; Somfai, P. J. Org. Chem. 1996, 61, 8148 and references therein. For synthetic applications and ring-opening reactions of sugar aziridines, see: (i) Hale, K. J.; Domostoj, M. M.; Tocher, D. A.; Irving, E.; Scheinmann, F. *Org. Lett.* **2003**, *5*, 2927. (j) Charon, D.; Mondange, M.; Pons, J.-F.; Le Blay, K.; Chaby, R. Bioorg. Med. Chem. 1998, 6, 755. (k) Ali, Y.; Richardson, A. C.; Gibbs, C. F.; Hough, L. Carbohydr. Res. 1968, 7, 255. (1) Gibbs, C. F.; Hough, L.; Richardson, A. C. Carbohydr. Res. 1965, 1, 290. (m) Guthrie, R. D.; Murphy, D. J. Chem. Soc. 1965, 3828. (n) Buss, D. H.; Hough, L.; Richardson, A. C. J. Chem. Soc. 1965,

(10) Prolonged reaction times (1 h) at 5 °C afforded a 7:3 mixture of vinyl aziridine 7α and *tert*-butyl α -O-glycoside 11α (Table 1) derived from 1,4-addition to aziridine 7α of t-BuOH formed in the reaction mixture by deprotonation—cyclization of N,O-dimesylate 6 by t-BuOK.

(11) If MeOH is not initially present in the reaction mixture but is added only after 15 min of stirring of the starting solution of N, O-dimesylate $\mathbf{6}$ in the presence of t-BuOK, tert-butyl α -O-glycoside $\mathbf{11}\alpha$ turned out to be the only product present in the crude reaction mixture (1 H NMR).

1300 Org. Lett., Vol. 7, No. 7, 2005

^{(5) (}a) Di Bussolo, V.; Caselli, M.; Pineschi, M.; Crotti, P. *Org. Lett.* **2002**, *4*, 3695. (b) Di Bussolo, V.; Caselli, M.; Pineschi, M.; Crotti, P. *Org. Lett.* **2003**, *5*, 2173. (c) Di Bussolo, V.; Caselli, M.; Romano, M. R.; Pineschi, M.; Crotti, P. *J. Org. Chem.* **2004**, *69*, 7383.

Table 1. Glycosylation of Alcohols and Phenol by the in Situ-Formed Vinyl Aziridine 7α (Protocol A)

$$\begin{array}{c} \text{BnO} \\ \text{MsO} \\ \text{MsHN} \\ \text{C}_{6} \text{H}_{6} \\ \end{array} \begin{array}{c} \text{ROH} \\ \text{Ms} \\ \text{N} \end{array} \begin{array}{c} \text{BnO} \\ \text{N} \end{array} \begin{array}{c} \text{BnO} \\ \text{MsHN} \\ \end{array} \begin{array}{c} \text{OR} \\ \text{MsHN} \\ \end{array} \begin{array}{c} \text{S-15}\alpha \\ \end{array}$$

Entry	Glycosyl Acceptor (ROH)	Time (h)	Product"	Yield (%)
1	МеОН	3	BnO ,,,OMe	80
2	EtOH	3	BnO ,OEt MsHN''' 9 α	78
3	<i>i</i> -PrOH	3	BnO MsHN'' 10α	76
4	t-BuOH	3	BnO $MsHN^{t}$	82
5	PhOH	3	BnO O MoPh MsHN 12α	75
6	Dihydro- cholesterol	16	Bn Ο Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	76
7	HO 0	4	BnO (14α)	74
8	HO 10,000	5	BrO , , , , , , , , , , , , , , , , , , ,	72

 a In all cases, the corresponding β -anomer was detected (1 H NMR): entries 1–3 (7%), entry 5 (5%), and entries 4 and 6–8 (less than 1%). b Purified product (flash chromatography or preparative TLC).

To verify the scope of this glycosylation method, a number of glycosyl acceptors were employed in coupling reactions with the intermediate aziridine 7α (Table 1). Under the described protocol (protocol A), simple primary (EtOH) and secondary alcohols (*i*-PrOH) and phenol (entries 2, 3, and 5, Table 1), as well as more hindered O-nucleophiles such as *t*-BuOH, (+)-dihydrocholesterol, 1,2;5,6-di-*O*-isopropyl-

idene- α -D-glucofuranose (diacetone D-glucose), and 1,2;3,4-di-O-isopropylidene- α -D-galactopyranose (entries 4 and 6–8, Table 1), were glycosylated with good yields. The corresponding 4-N-(mesylamino)-2,3-unsaturated- α -glycosides (9α - 13α) and disaccharides (14α and 15α) were obtained with complete 1,4-regioselectivity and high (93-95%, in the case of 9α , 10α , and 12α) or complete α -stereoselectivity (in the case of 11α and 13α - 15α) (Table 1).

In the case of MeOH, EtOH, *i*-PrOH, and *t*-BuOH, the addition reaction was repeated using the alcohol itself as the solvent (protocol B). Under these conditions, the glycosylation reaction was still completely 1,4-regioselective, but the α/β anomeric ratio depended on the alcohol used. For example, the low α -stereoselectivity observed with the less hindered MeOH ($\alpha/\beta = 60/40$) increased on passing to the progressively more hindered EtOH ($\alpha/\beta = 75/25$) and *i*-PrOH ($\alpha/\beta = 93:7$). Only in the case of the encumbered *t*-BuOH was complete α -stereoselectivity observed (Scheme 3).

Scheme 3. Glycosylation of Simple Alcohols by the in Situ-Formed Vinyl Aziridine 7α (Protocol B)

Due to the substantial amount of β -anomer present, the reactions carried out in MeOH and EtOH under protocol B required the separation by preparative TLC of the α - (8α and 9α) and β -glycosides (8β and 9β) whose relative structure and configuration were independently determined by appropriate NOE experiments carried out on the respective H-1 and H-5 protons. This allowed us to assign the α -configuration to the major or only O-glycoside present, not only in these (MeOH and EtOH) but also in all other addition reactions (entries 3-8, Table 1).¹²

Org. Lett., Vol. 7, No. 7, 2005

⁽¹²⁾ Contrary to what was observed in the α - and β -O-glycosides derived from epoxides $\mathbf{1}\alpha$ and 1β , respectively, the chemical shift of the anomeric proton H-1 in the ¹H NMR spectra of the diastereoisomeric pairs 8α and 8β and 9α and 9β is not useful for assigning the relative α - and β -configuration of anomers. However, the chemical shift of the singlet corresponding to the methyl group of the MeSO₂NH- group in the ¹H NMR spectrum of both 8β and 9β (δ 2.95) is more downfield than that in the corresponding anomers 8α and 9α (δ 2.88). As a consequence, the observed value of the chemical shift of the mesyl group for the main or almost unique addition product, typically around $\delta 2.87 - 2.90$, together with the observation of the constant presence of a slightly downfield singlet signal around δ 2.95–2.98 in the crude addition reaction mixture corresponding to entries 3-8, Table 1, reasonably due to the corresponding β -anomer (5-7% in entries 3 and 5, and less than 1% in entries 4 and 6-8, Table 1) made it possible to assign the α -configuration to the main, or almost unique product, in each addition reaction.

The results obtained indicate that in the case of aziridine 7α there is a close relationship between the configuration (α) of the three-membered heterocycle (the aziridine ring) and the largely predominant or exclusive direction (α) of the O-glycosylation process, as previously observed for the corresponding epoxide 1α in related addition reactions.^{5c}

The occurrence of an effective coordination (hydrogen bond) between the aziridine nitrogen and the O-nucleophile (ROH) as shown in structure **16** (Scheme 4) can reasonably

Scheme 4. Rationalization of the 1,4-Regio- and α -Stereoselective Addition of Alcohols to Aziridine 7α

rationalize the results. In this way, the nucleophile alcohol (ROH) is brought onto the α -face of the aziridine system and is suitably arranged for an entropically favored α -directed nucleophilic attack on the C(1) carbon of the unsaturated system, via pseudoaxial attack (*route a*, Scheme 4). Conversely, a β -directed attack on C(1) (*route b*, Scheme 4), which corresponds to a less favored pseudoequatorial attack, by a free, noncoordinated O-nucleophile (ROH) should reasonably be less active, particularly in conditions where a small amount of the nucleophile is present (protocol A), as experimentally observed (Table 1 and Scheme 4).

Within this rationalization, it is interesting to note that the α/β stereoselectivity observed under protocol B with vinyl α -aziridine 7α (from $\alpha/\beta=60/40$ in MeOH to $\alpha/\beta=75/25$ in EtOH, and $\alpha/\beta=93/7$ in *i*-PrOH, Scheme 4) is smaller than that observed with the corresponding α -epoxide 1α under the same O-glycosylating conditions (from $\alpha/\beta=81/19$ in MeOH to $\alpha/\beta=93/7$ in EtOH and complete α -stereoselectivity in *i*-PrOH). Reasonably, the inductive and conjugative electron-withdrawing effect of the mesyl group makes the lone pair of the aziridine nitrogen of 7α less available for hydrogen bonding than the oxirane oxygen lone pair of epoxide 1α , the β -directed attack by a noncoordinated nucleophile molecule (ROH) more competitive (*route b*, Scheme 4).

Studies are under way in order to evaluate the regio- and stereochemical behavior of aziridine 7α with other nucleophiles, such as C-, N-, and S-nucleophiles.

Acknowledgment. This work was supported by the University of Pisa and MIUR, Roma. P.C. gratefully acknowledges Merck Research Laboratories for the generous financial support derived from the 2002 ADP Chemistry Award.

Supporting Information Available: Experimental details and spectral and analytical data for all reaction products. This material is available free of charge via the Internet at http://pubs.acs.org.

OL050053R

(13) Overberger, C. G.; Tobkes, M. J. Polym. Sci. 1964, 2, 2481.

1302 Org. Lett., Vol. 7, No. 7, 2005